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By
H. J. Frost and M, F. Ashby*

Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts
ABSTRACT

A crystalline solid can deform plastically in a number 6f wayé.
Deformation mechanism diagrams can be constructed which show the
fields of stress and temperature in which a given mechanism is dominant
and the strain-rate that it y-leldsl. This second report presents detailed
maps for five pure f. c. c. metals I(Ni', Cu, Ag, Al-and Pb), six pure b.c.c.
metals (V, Cr, Nb, Mo, Ta and W) anfl a recrystallized Ni — 1 vol% Tho,
alloy, which are based on direct comparison to available experimental
data. It also present further discussion of the various deformation
mechanisms, with refinements of their rate equations. |

Various applications of the diagrams are i11ust:lrated.l They provide
a convenient means for the normalized comparison of the behavior of
different metals. They also demonstrate the effects of various changes.

in materials in a manner useful for qualitative engineering design,

*University Engineering Laboratories, The University of Cambridge,
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A SECOND REPORT ON DEFORMATION MECHANISM MAPS

I. INTRODUCTION

Plastic flow is a kinetic process. Although it is often convenient
to think of a solid as having a weil defined yield stress, below which it
does not flow, this is inaccurate. Above absolute zero, any stress will
cause a polycrystalline solid to flow — although the rate at which it
does so may be indetectably small on the time scale of a laboratory exper-
iment or an engineering application. This rate depends on the mechanisms
of flow. A polycrystal may deform plastically by one, or a combination
of, the following atomistic processes: defect-less shear of atom layers,
dislocation glide, dislocation climb, diffusive flow of individual atoms,
displacement of grains by grain boundary sliding, and mechanical twinning.
It is the kinetics of these processes that determine the rate of flow.

Although these are the only atomistic processes available, it is
ﬁore convenient to describe the plastic behavior in terms of mechanisms
which describe the different manners in which the atomistic processes
may operate. We therefore consider the following deformation mechanisms,
divided into five groups:

1) Defect-less flow (flow when the ideal shear strength is exceeded).

2) Flow by dislocation glide alonme.

a) Limited b? allattice resistance (Peierls stress).
b) Limited by discrete obstacles.

c) Limited by phonon or other drag.

.I_



3) Twinning.
4) Flow involving dislocation climb.

a) Glide plus lattice-diffusion controlled climb
("High temperature creep')

b) Glide plus core-diffusion controlled elimb
' ("Low temperature creep")

c) Harper-Dorn creep.
d) Power-law breakdown,

5) Diffusional flow (involving the motion of single ions only).

a) Lattice-diffusion controlled flow (Nabarro-Herring creep).
b) Grain-boundary-diffusion controlled flow (Coble creep).
c) Interface-reaction controlled diffusional flow.

Certain other mechénisms (e.g. superplastic flow) may exist, but are
insufficiently well understood to include them in the calculations presented
below. Equally important are a number of coupled mechanisms (e.g. grain
boundary sliding accommodated by dislocation creep).

For each mechanism a rate-equation exists. In its simplest form,
this is an equation linking shear-strain rate (?) to the shear stress (g),

temperature (T) and to structure:

; = % (o0, T, structure)

or, more generally

eij = E(Oij, T, structure)

L]
(where € is the strain rate tensor, and ¢

ij ij

ture" includes all the internal characteristics of the deforming polycrystal;

the stress tensor). ''Struc-



first, its atomic structu;e: the crystal class and type of bonding;
and second, its defect structure: grain size, solute or precipitate
concentration, dislocation density and arrangement, and so on. 1In
more complete form, the rate-equation mechanism may be described by a
set of coupled differential equations that explicitly consider the time

dependent changes in a number of structural parameters, Sl, Sz, S3, etc:

eij = f(oij, T, S1» Sy S5 .+ - 3
dSl = fl(cij, T, sl, 52, s3 e e) _ (2)
ds, = fz(o'ij, T, sl, Sy Sy 0 .dt

where dt is an increment of timé.

In order to conveniently present the relation between %, T and 0 in
three dimensions, it is necessary to make certain assumptions about the
internal structure. Two formulations may be used fo simplify the infgrnal
structure dependence, The first assumes éteady-state flow. In this case
’the internal variables of dislocation density and arrangement no-longer
appear explicitly in the rate-equations because they are uniquely determined
by the external variables of stress and temperature. This is‘the coﬁdition
S

that 0 = dS, = dS2 = dS_ etc., and it implies that we can solve for S

1 3 1* 72

etc. in terms of 0 and T. The second formulation assumes constant internal

structure, particularly dislocation structure. This case can be used to



represent the straln-rate and temperature dependence of the flow stress
for a given initial internal structure. It requires that the parameters

S S, « . . be known or specified. High temperature deformation

1+ 520 53
is usually described by the steady;state formulation. Low temperature
deformation is commonly characterized by constant structure yield stress.
In fact, a steady-state deformation is rarely measured at low temperatures
because of work-hardening effects. We have attempted to use the steaqy-
state formulation as far as possible, buf have been forced to use a con-
stant structure formulation for the dislocation glide mechanisms which
dominate at low temperatures: the equation describes the field stress
at a given structure, not the steady-state flow stress,

This rather complicated behavior can be presented on a map with
axes of stress and temperature., The map is divided into fields which
indicate regions of stress and temperature where each of the various
mechanisms are dominant, as shown in Fig. 1 (maps for pure nickel of grain
size lmm and 10um). Superimposed on the fields are contours of constant
strain-rate: these show the net strain-rate (due to apprépriate supef-
position of all the mechanisms) that a given combination ofrstress and
temperature will produce. The map depicts the relationship between three
variables: stress, temperature, and strain-rate. If any two of these
variables are épecified; the map can be used to determine the third.
There are, of course, other methods of presenting this relationship.

Fig. 2 is a plot for nickel (grain size = 0.lmm), showing various con-
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tours of constant temperature on axes of strain-rate versus normalized
shear stress, shbwing the same mechanism fields. This type of plot is
useful for comparisons to isothermal tests. A third type of plot showing
various contours of constant stress (or constant normalized stress) on
axes of strain-rate versus temperathre {or reciprocal temperature) can

be used for comparison to tests at constant stress. This third type is

not shown in this paper.

Such maps are constructed from the rate-equations. 1In doing so, one
has to make assumptions about the way in which the mechanisms superimpose.
The simplest supposition is that the five classes of mechanisms operate
independently so that the strain-rates produced by each add to give the
total resultant strain-rate: - the dominant mechanism is the one which con-
tributes most to this total. Although this is a groés oversimplification,
it works surprisingly well — because at any given point on the diagiam
one mechanism usually dominates overwhelmingly. Nevertheless, in con=-
sttucting.the maps shown here, we have used a somewhat more sophisticated

set of assumptions which we discuss in section 2.

Once the rate-equations and method of superposition are specified,
the maps can be constructed most easily by numerical computation. This
paper reports further progress in developing the maps, presenting them

for five f.c.c. and six b.c.c. metals, The principal differences between



this and our first report (Ashby, 1972a) are:

a)

b)

A change from tensile strain-rate and stress to equivalent
shear strain-rate and stress. The equivalent shear stress

is defined as:

- 1 1/2
Og = (7544549

where

1
s 945 =3

15~ %13 813%x

~and the equivalent shear strain-rate as:

- . . 1/2
Y = (Zeijeij)

These values are equal to the simple shear stress or strain-

- rate, and are related to the tensile stress, °11’ and tensile
strain-rate, ell’ as
0‘ [ ]
-~ ll -— .
US E H Y /5 Ell N

The introduction of new or improved rate-equations, One of
these appears as a field on all the maps shown here: 1t 1s a
core-diffusion controlled creep mechanism ('"Low temperature

creep").



c) An improved computational method.

d) A much more thorough selection and optimization of the data

used to construct the maps.

In spite of these improvements, one muet be careful not to attribute
too much ﬁrecision to the diagrams. Although they are the best we can do
at present, they are far from perfect or complete. Both the equations
in the following sections,; and the maps constructed from them, must be

regarded as a firet approximation only.

2. RATE-EQUATIONS

In this section we list, with a brief explanation, the equationé used
to construct the maps. These equations differ in detail from thoselof our
earlier report. The approach we have used is to select an equation which
is based on a physically sound microscopic model, or family of models.
Frequently this leads to a rate-equation containing one or more coeffi—
cients or exponents for which only bounds are known;‘the model is too
imprecise, or the family of models too broad, to predict exact values,
Theory gives the form of the equation; we have to resbrt to experimental
data to set the constants which enter if. This approach of ''model inspired
phenomenology" i1s a powerful one in dealing with phenomena too complicated
to model exactly. In particular, an equation obtained in this way can be

used to extrapolate outside the range for whichldata is avaiiable; a purely
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empirical equation cannot.

In accordance with this approach we have set our accuracy aims in
line with the general accuracy of experiments, which is generally about
+ 10% for yield stress: the error being somewhat greater for strain-rate
at a given stress and temperature, Thus, for example, we have not considered
the temperature dependence of the atomic .volume or Burgers' vector, but have
considered the temperature dependence .of the shear modulus.

The symbols which appear in the rate-equations have the following

meaning:

? Shear strain-rate

U,cs _ Shear stress
T Absolute temperature
k Boltzmann's constant
Q Atomic or molecular volume
b Burgers' vector .
TM Absolute melting temperature
u An.apprqpriate, temperature dependent, shear modulus
Dv . Lattice-diffusion coefficient
DB Grain-boundary diffusion coefficient
Dc Dislocation-core-diffusion coefficignt
8 Thickness of the high-diffusivity boundary path
a, Area of the high-diffusivity core path
n A dimensionless constant

Al,AZ Dimensionless constants for dislocation creep

“ T Ideal shear strength
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Tp Peierls stress at 0°K
? Flow stress for obstacle cutting in absence of thermal
activation
12
v Debye frequency (taken as 10" " /sec)
?p,?o Constants with the dimensions of strain-rate
AFk,AF Helmholtz free-energies of activation for kink-pair
formation, and for obstacle cutting respectively
d Grain size
p Dislocation density
bm Mobile dislocation density
a,B,ﬁ,q' - Dimensionless constants for dislocation glide
2 Obstacle spacing
g',a' Dimensionless constants for power-law breakdown

2.1 Defect-=less Flow

The idballshear strength defines a stress level above which flow of
a defect-free crystal (or of one in which all defects are pinnéd) becomes
catastrophic: the structure becomes mechanically unstable. Simple inter-
atomic force models can be used to computé this onset of this instability
(Tyson, 1966; Kelly, 1966) and hence the ideal stréngth at 0°K, which we

call 1 Above 0°K the problem is a kinetic one: with what frequency

TH®
do stable dislocation loops appear in an initially defect-free crystal?
In this paper, we have not solved this kinetic problem; the temperature

dependence of the ideal shear strength is assumed to be the same as the
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shear modulus. We have used the same equation that was used earlier:

. - >
Y = when 0 > TTH

(3)

L] - <
YA 0 when o TTH

There have been several theoretical calculations of T generally yielding

TH®
u/20 to W/10. The exact value is expected to depend on the crystal struc-

ture. For f.c.c. metals we have used Ty = 0.0606 , taken from the com-

puter calculations of Tyson (1966) based on a Lennard-Jones interatomic

potential. For b.c.c. metals we have used T = 0,11 , taken from an

TH
analytical calculation of MacKenzie (1949).

2.2 Dislocation Glide

Below the ideal shear strength, flow by the conservative motion of
dialocations is possible — provided (since we are here concerned with
polycrystals) an adequate number of independent slip systems are ayailable.
This motion is almost always obstacle-limited: it is the interaction of
mobile dislocations with other dislocations, with solute or precipitates,
with grain boundaries, or with the lattice itself which determines the
rate of flow.

Dislocation glidg is responsible for the yielding of most laboratory
and engineering materials. The yield-strength of many polycrystalline

materials does not depend strongly on the rate of straining — a fact which
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has lead to models for ylelding which ignore the effect of strain-rate
(and of temperature) entirely. This is misleading: dislocation glide
i1s a kinetic process. A density pm of mobile dislocations, moving through
a field of obstacles with an average velocity v (determined almost entirely
by their waiting time at obstacles) produces a strain-rate
: - (4)
Y = p bv
At steady-state, pm is a function of stress and temperaturé only. The
simplest function, and one broadly consistent with both theory (Argom,

1970) and experiment is

g .2
P, = G(ﬂ' (5)

where a is a constant of order umnity. Then
Y = - ()7v (6)

The kinetic problem is to calculate v, Inlthe most-interesting range

of stress, it is determined by the raté at’which a dislocétion segment

is thermally activated through, or round obstacles. (Above a sufficiently
high stress — the "mechanical flow stress", T — the segment'can over-—
come an average obstacle without any help from thermal energy. Its velocity

is then determined by energy-dissipating processes such as phonon drag).
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In developing rate-equations for v (for reviews see Evans and Rawlings,
1969; Kocks et al, 1974; de Meester et al, 1973) one immediately encounters
a difficulty: the velocity is always an exponential function of stress,
but the detalls of the expression depend on the shape and nature of the
obstacles, theilr density, and the statistics of their distribution. There
are as many rate-equations as there are obstacle types. On closer examina-
tion, obstacle types fall into three broad classes: discrete, point-like
obstacles which can be cut or surrounded by a moving dislocation; and
extended, or diffuse obstacles such as a concentrated solid solution.
Rate-equations for obstacles of one class differ in details, but have
certain features in common. Our approach here has been to select the rate-
equation which most nearly describes all classes of obstacles, and to treat
certain of the parameters which appear in it as adjustable, to be matched
with experiment. This approach utilizes the most that model-based theory
has to offer, while still ensuring an accurate description of experimental

A
data.

2.2a Glide limited by discrete obstacles

If the Gibbs free-energy of activation for the cutting or by-passing
of an obstacle 1Is G(0), the velocity of a dislocation segment, v, is given

by (see reviews listed above):

AG (o) 7

v = Bby exp - T

where B is a dimensionless constant. AG(0) depends on the distribution
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and shape of obstacles. ('Shape" refers to the distribution of internal
stress which characterizes an obstacle). A regular array of box shaped
obstacles (each one viewed as a circular patch of cdnstant, adverse,

internal stress) leads to the simple result:
g
AG(o) = AF(1 - =)
T

where AF is the total free energy required to overcome the obstacle with-
out aid from external stress. T is.the stress which reduces AG to zero:
roughly, the flow stress at 0°K times a factor to account for modulus tem-
perature dependence. |

But obstacles are seldom box shaped and regularly spaced. If other
obstacle shapes are considered, or allowance for a random;‘rather than a
regular distribution, all the results can be described in the general

equation (Kocks et al, 1974):
86(@) = AF[L - P9 | (8)

The'quantities, P, q and AF are bounded: all logical models léad to values

of:

o
| A
o
| A
[

The choice of p and q will influence the exact shape of the strain-rate
contours. For the case of pure f.c.c. metals, however, the influence 1is

‘not great; it would not appear on maps of the scale presented here. We
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have therefore used the box shaped obstacle, with the rate-equation:

Y, = Yo ex [- 45 - D). )
T

For the pre-exponential,

= (10)
Yo ©

olQ

(%) 2 Bbv,

we have used ?0 = 106/sec. Neglecting the pre-exponential stress dependence
also has little effect on the f.c.c. maps.
The strain-rate does depend sensitively on AF and T. The value of

AF depends on the strength of the obstacles, which may be classed as

follows:
Obstacle strength AF Example
Weak < O.Zub3 Isolated solute atoms;
Peierls barriers.
Medium = O.Sub3 Forest dislocations;
Radiation damage.
Strong > ub3 Dispersions; Most precipitates.

For pure f.c.c, metals in a work-hardened state, the important

obstacles are forest dislocations. Accordingly we have used AF = O.Sub3

for all the f.c.c. maps.
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The value of ? is the flow stress in the absence of thermal activation.

For localized obstacles it is proportional to EER where £ is the obstacle

spacing. The constant of proportionality 1is complicated, depending on the

strength of the obstacles and on the statistics of theilr distributions.

We have simply used T = EEE « This can also be expressed in terms of the

dislocation density, p, as T = ub/p. 1In the maps presented here, we have

specified R, thereby specifying the degree of work~hardening.

2.2b Glide limited by lattice friction

The velocity of a dislocation in most polycrystalline solids* is
limited by an additional sort of barrier: that due to its interaction with
the atomic structure itself. This Peierls resistance or lattice resistance
reflects the fact that the energy of the dislocation fluctuates with
position with an amplitude and wavelength dictated by the nature of the
‘interatomic or intermolecular bonding, and the lattice parameter. The
crystal lattice presents an array of infinitely long straight barriers to
the motion of the dislocation; it advances by throwing forward (with help
from the applied stress and thermal energy) kink palrs, which subsgquently
spread apart. (For a review, see Guyot and born, 1967).

It is uéually the nucleation-rate of kink-pairs which limits disloca-
tion velocity. The Gibbs free energy of activation for this event depends

on the detailed way in which the dislocation energy fluctuates with distance,

*Examples are: elements with the diamond cubic structure, most covalent,
and many ionic compounds, interstitial compounds such as carbides, borides
and nitrides, some pure metals (notably those with a b.c.c. structure),
alloys and intermetallic compounds, and (probably) most organic compounds.



and on the applied stress and temperature. Like those for overcoming
discrete obstacles, the activation energies for all reasonable forms of
energy fluctuation, and temperatures, form a family described (as before)
by:

26(0) =aF (1 - HP1?

TP

where AFk is the Helmﬂoltz free energy of an isolated pair of kinks,-and
Tp is, to a sufficient approximation, the flow stress at 0°K. (The equa-
tion of Guyot and Dorn, used in our earliervreport* will be recognized as
the special case of p =1, q = 2). Kocks et al (1974} have reviewed
various calculations for AG and have concluded that an adequate descrip-
tion of all such barriers is
g

T
p

4/3

)

]

34 (1)

4G(o) = &F, [1 ~(
though it should be emphasized that the result is not sensitive to small
changes in exponents. Combining this with eqs. 6 and 7 leads to an optimum,

model-based rate-equation for glide limited by a lattice friction:

(

)3/4 4/3}

]

AF

g2
2
u) (12)

§=\.((“ exp-{k—];[l-(c/r
3 P P

To demonstrate that this equation is insensitive to p and q, we have

calculated constant strain-rate contours for several sets of p and q, as

*
This equation was misprinted as (1 - Gp/o)2 instead of (1 - G/GP)Z.
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shown (on an expanded scale) in figure 3. Although these contours do not
exactly overlap, the shapes are similar, and they could be made to overlap
well if the parameters ;p' AFk and Tp were adjusted appropriately.

The atomic structure enters the equations via AF, (typically 0.1 to
1ub3) and ?p(typically 10-3 to 10-1u), which directly reflect the nature
and strength of the interatomic forces: these, too, are to be determined
by fitting equation (12) to éxperiment. Note that the pre-exponential
contains a factor of stress squared, repregenting the variation of moblle
dislocation density with stress. This is a simplification because it
neglects the way in which the steady-state kink density varies with stress,
which is a complicated and only partlyvresolved problem (Hirth and Lothe,
1968; and Kocks et al, 1974)., If experimental data were to permit it,
the pre-exponential stress power should be treated as adjustable. Changing.
fhis power would not substantially change the maps shown in this paper.

It would however require changing the value of Qp' With the stress-squared
- pre-exponential we have used §p = 1011.

It should be noted that the value of ?p in the rate-equation will differ
by some appropriate Taylor factor between single crystal and polycrystalline
samplés. The proper value should depend on the crystal structure and slip
systems involved. Various calculations of the Taylor factor, ﬁ, have been
discussed by Kocks (1970), who finds that E = 2,9 + 5% is most appropriate
for b.c.c. metals, converting critical resolved shear stress to tensile
stress. Using our conversion to effective shear stress (Us = 011//3), we

have a factor of about 1.67. This factor can be directly applied to Tp in
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equation 12 to find the polycrystalline rate-equation from experimental

critical resolved shear stress data.

2.2c Glide limited by phonon or other drags

Under conditions of explosive or shock loading, and in certain
metal-forming operations, the strain-rate can be large (>102/sec). Then
the interaction of a moving dislocation with electrons and phonons can
iimit its velocity., (Under special conditions — when:solute atoms are
mobile, for example — other drag mechanisms may become important at
lower strain-rates). The strength of the interaction i1s measured by the

drag coefficient, B, defined by
gb
v e T (13)

leading to the rate-equation for purely drag-limited glide:

y = =2 &, | (14)

For pure f.c.c. metals the important drag is that due to phonons, although
electron viscosity may become important at very low temperatures. B has
‘values which typically lie between 10-3 and 10-4 dyne sec/cm2 for most
metals and ionic crystals (see Klahn et al, 1970). The value of B for
phonon drag should depend on the phonon density, and should therefore be

approximately linear with temperature below the Debye temperature:

This 18 found experimentally for single dislocations (e.g. Jassby and

“Vreeland, 1970). For the polycrystalline rate-equation the important
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parameter is pm/B. Experimentally, this has been found to be constant,

or even increasing, with temperature (Kumar et al, 1968; Kumar and

Kumble, 1969). This indicatgg thap‘om increases with temperature spf-
ficiently to offset the increase in B. The same studies found that ¢
increased linearly with ?, iqdicating that om remains constant with
respect to change of 0, (For other types of drag the uéual pm¢02 may be
more accura;e)._ Although theré are experimenfal values.availablg for pm/B
for some metals, we have not yet included>this mechanism in our maps; it
would not appear on most of the maps presented here, which show ? = 1/sec

as the maximum strain-rate contour.

2.2d Superposition of glide-limiting processes

The rate-equations of this section describe the strain-rate when
each strengthening mechanism — discrete obstacles or a lattice friction
— operates alone. At the lowest level of approximation they can be

treated as gqlternatives:

Yo1i4e = Least of {Yz, 73} | (16)

This is the level of approximation adopted here. It is equivalent -to
.assuming that the strongest obstacles control the flow stress, and is
entirely adeduaté for our purposes.

A better approximation is to recognize that, when several strengthening
mechanisms (drag, obstacles, lattice resistance)operate at once, their
contributions to the flow stress superimpose in a roughly linear way. Even

this is an approximation: the superposition is seldom truly linear. The
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highest precision 1s possible only by modelling the detailed way in which
a given pair of mechanisms interact (see Evans and Rawlings, 1969; Kocks

et al, 1974; Frost and Ashby, 1971).

2.3 Twinning

Mechanical twinning may be an important deformation mechanism at low
temperatures in h.c.p. and b.c.c. metals., It is less important in f.c.c.
metals, only occuring at very low temperatures. Twinning does not appear
on the maps presented here because no reliable rate-equation is available
to describe it, Strictly speaking, twinning is a variety of dislocation
glide which involves partial dislocations instead of complete dislocations.
The kinetics of the process, however, are not identical to those of dislo-
cation glide described in the previous section. The process involves the
nucleation of twins which then grow very rapidly. If twin nucleation is
the rate-controlling process, the rate-equation could be expressed as a
stress assisted, thermally activated rate process:

. . AGN(G,T) . AFN o
Y = Yt exp (- KT ] <~ Yt exp [- ﬁ (l - Tt(T))]

where AGN(G,T) is the Gibbs free energy to nucleate a twin; AFN is the free
energy to nucleate a twin without the aid of external stress; ?t is a
constant with dimensions of strain-rate which includes the density of avail-
able nucléation sites and the strain produced per successful nucleation;

and Te is the stress required to nucleate twinning in the absence of ther=-

mal activation. The temperature dependence of AGN must be included to explain
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the observation that the twinning stress may decrease with decreasing
temperature (Bolling and Richman, 1965). The observation of a slight
inverse strain-rate dependence of the twinning stress cannot be explained
by this rate-equation.

Although we have not used a rate-equation for twinning, we have
plotted a few experimental points uhere~twinning is observed, particularly
for f.c.c. metals. (All the b.c.c. metais discussed here show some twin-
ning at low temperatpres). The tendency for f.c.c. twinning increases
with decreasing stacking fault energy, being a maximum in silver and not
observed in aluminum. This is in accordance with a twinning mechanism

involving partial dislocations.

2.4 Flow Involving Climb

Above 0.3 Tﬁ dislocations acquire a new degree of freedom: ' they can
climb as well as glide. If a gliding dislocation is held up by discrete
obstacles, a little climb may release it, allowing it to glide to the next
set of obstacles where the process is repeated (see, for example, the
work of Weertman). The glide gstep in its motion 1s responsible for almost
all the strain, although its average velocity is determinad by the climb
step. Mechanisms which are based on this climb-plus-glide sequence we
refer to as climb-controlled creep (Weertman, 1963).

The important feature which distinguishes these mechanisms from those
of earlier sections 1is that the rate-controlling process, at an atomic

level, is the diffusive motion of single ions or vacancies to or from the

climbing dislocation, rather than the activated glide of the dislocation itself.
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2.4a Climb-controlled creep: Lattice and core diffusion

Above 0.6 T, climb is generally lattice-diffusion controlled. The
velocity Ve at which a dislocation climbs under a local normal stress o

is (Hirth and Lothe, 1968):

17)

We obtain the basic climb-controlled creep equation by supposing that
Un is proportional to the applied stress O, and the average velocity
of the dislocation v is proportional to the rate at which it climbs, V..

Then (combining eqs. 6 and 17)

D ub
. 0.3
Y = A Z_T (H) : (18)

where we have approximated by b3, and incorporated all the constants of
proportionality into the dimensionless constant, Al.
Some materials obey this equation: they exhibit power-law creep

with a power of 3 and a constant A, of about unity, as we would expect

1
(see, for example, Stocker and Ashby, 1973). But they are the exception
rather than the fule. It would appear that the local normal stress, O»
is not necessarily proportional to 0 (implying that dislocations may be
moving in a cooperative manner) or that the average dislocation velocity
or mobile density varies in a more complicated way than we assumed here.
Over a limited range of stress, up to roughly 10-3u, experiments are well

described by a modification of equation 18 (Mukherjee, Bird and Dorn,

1969) with an exponent, n, which varies from 3 to about 8:
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. Dvub Os n
YA Sa D) | (19

Present theoretical models for this behavior are unsatisfactory. None
can convincingly explain the observed values of n, and the large values of
the dimensionless constant* A2 (up to 1015) strongly suggest that some
important physical quantity is missing from the equation in its'present
form (Stocker and Ashby, 1973). But it does provide a good description
of experimental observations, and in so far as it is a generalization of
eq. 18, it has-some basis in ; physical model.

This was the only climb-creep equation incorporated into our earlier
report. We have found it incapable of explaining certain experimental
facts. To do so it is necessary to assume that éransport of matter via
dislocation core diffustion contributes significantl& to the overall diffu-
sive transport of matter, and — under certain circumstances — becomes
the dominant transport mechanism. Robinson and Sherby (1969) have sug-
gested, rightly, we believe, that this might explain the lower'activation
energy for creep atilower temperatures. We have incofborated the econtri-
bution of core diffusion by defining an effective diffusion coefficient

(following Hart, 1957 and Robinson and Sherﬁy, 1969):

=D + D
peff .va Se fc

*Eq. 19 is usually written in terms of tensile stress and strain-rate,

Our constant A, (which relates shear stress to shear strain-rate) is

related to the equivalent constant A which appears in tensile forms of

this equation by A = (/E)n + 1A For further discussion see section 4.
2 .
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where DC is the core diffusion coefficient, and fv and fC are the frac-
tions of atom sites associated with each type of diffusion. The value

of fv is essentially unity. The value of fC is determined by the dislo-
cation density, p, as fc = aco, where a, is the cross-sectional area of
the dislocation core in which fast diffusion is taking place. Experimen-
tally it is only possible to measure the quantity aCDC. The rathér sparse
measurements of it have recently been reviewed by Balluffi (1970): the
diffusion enhancement varies with dislocation orientation (being perhaps
10 times 1arger for edges than for screws), and with the degree of disso=-
ciation and therefore the arrangement of the dislocations. Even the
activation energy is not constant, In general, DC is about equal to Db’
the grain boundary diffusion coefficient, 1if a_ is taken as about 5b2.

*
By using the common experimental observation that p = l% (G/lJ)2

b
(eq. 5), our effective diffusion coefficient becomes:
IOaC 2 Dc
g = D11+ —F @w? (20)

which, when inserted into eq. 19, yields the rate-equation for dislocation

creep:
o BoPegg P

) (o/w? (21)

Equation 21 1is really two rate-equations. At high temperatures and low

stresses lattice diffusion is dominant; we have called the resulting field

*
The observations of Vandervoort (1970), for example, indicate p = B/bz(c/u)2
for tungsten in the creep regime.
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high temperature creep ("H.T. creep'). At lower temperatures, or higher

stresses, core diffusion becomes dominant, and the strain-rate varies as
+ 2 ' ‘ ‘

o ingtead of On; this field appears on the maps as low temperature

ereep ("L.T. creep").

2.4b Harper-Dorn creep

There is some experimental evidence that at sufficiently low stresses
dislocation creep operates with ; linearly proportional to €. The effect
was first reported by Harper and Dorn (1957) and Harper et al (1958) in
pure aluminum., For g/u < 5 x 10-6 they found linear viscous creep at rates
much higher than the diffusional creep predictions. Similar behavior has
recently been found for lead and tin by Mohamed et al (1973)., Some
theoretical discussion of the mechanism has been summarized by Mohammed
et al (1972). The most plausible mechanism is the diffusion-controlled
climb of dislocations under conditions in which the dislocation density
does not change with stress., Mohammed et al (1972) summarize data showing
a constant low dislocation density in the Harper-Dorn range (p = 104/cm2).
Given this constant density, we may formulate a rate-—equation: ; = pbv,

using eq. 17 for v:

. D uQ
Y = p —g—(o/w) (22)
This may be expressed as:
D ub
. v
T = A T @/w) (23)
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with:

We have included Harper-Dorn creep in our maps for aluminum and lead,

using the following experimental values for AHD:

11

Aluminum: 5 x 10 (Harper et al, 19585

Lead: 1.2 x 107 (Mohammed et al, 1972).

These experimental values of AHD agree well with our simplified theory if
p = 104 f—IIOS/cmZ. We have not used this field for other metals because
of the lack of experimental verification. The field only appears when the

diffusional creep fields are suppressed by the large grain size.

2.4¢c Power-law breakdown

At sufficiently high stresses (usually about 10-3u) it is observed
that the simple power-law (eq. 19) breaks down; the strain-rate exceeds
that of the simple power-law prediction. Part of this is explained by
‘the low-temperature creep field where the power rises from n to (approxi-
mately) n + 2. (For a series of tests within a particular strain-rate
range, those done at low temparatures will be done at higher stresses).
There is, howev;rg a more dramafic breakdown at higher stresses, both at
high temperatures where the L.T. creep field is not predicted to have any

effect, and at low temperatures at the high stress end of the L.T. creep
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field. The process is evidently a transition from the climb-controlled
power-law creep to glide-controlled flow which varies exponentially with
stress, This glide behavior, however, is not identical to the low tempera-
ture glide behavior of yield because the diffusion available at elevated
temperatureé allows the dislocation structure to recover as rapildly as
the -deformation proceeds, théreby allowing steady-state deformation to
be measured. It should also be noted that in many cases dynamic recry-
stallization has been shown to be the recover meéhanism resulting in a
steady-state., |

Although there is no firm theoretical model for the poﬁer-law break-
down behaviér, there have been various attempts to develop empirical
equations. The review by Jonas, Sellars and Tegart (1969) discusses the ,

various experimental data. The exponential dependence of strain-rate

on stress provides a relationship:
Y = exp®'0). - (25)

Sellars and Tegart (1966) have proposed an equation to include both

the low stress power-law behavior and the high stress exponential behavior:

Y « A(sinh a'o)" , (26)

Atllow stresses (a'c < 0.8) this reduces to:

1 1
n n
g .

? x Aa

At high stresses (a'c > 1.2) this reduces to:

-

% o %-A exp(n'a'o).

~
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Equation 26 has been shown to describe deformation over a wide range of
stresses (e.g. Wong and Jonas, 1968).
The temperature dependence for this rate-equation has been included

as a simple activation energy:

Y = Alstoh (@'0) 1" exp )

Measured values of the apparent activation energy, Q, typically exceed

that of self-diffusion, Qv' This is taken as an indication that the
recovery process 1s different from that of climb-controlled power-law

creep. Some of the difference, however, may be accounted for by considering
the temperature dependence of the shear modulus, which has greater effect
when the stress dependence is greater (as in the exponential region). A

closer approximation may then be found with:

. a'o,,n' -
£ = A{sinh (—a—)] exp(E%§-

In order to have an exact correspondence of this equation with our power-

law creep (eq. 19) we propose:

Hb

D
° ff g 4n
= A! == [sinh (a'= (27)
where
In - A

t
A2 a 2-

We have, however, found some difficulty with this equation, The problem
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' and a', to describe three

stems from the use of only two parameters, n
quantities: n' describes the low stress power-law; a prescribes the stress
level at which the power-law breaks down (0 = 1/a')}; and n'c' describes
the strength of the exponential stress dependence. Lacking any physical
model, it must be considered fortuitous that any set of n' and a' can
correctly describe the.behavior over a wide range of stresses.

In spite of these reservations, however, we have attempted to fit
this equation to hot working (power-law breakdown) data for copper and
aluminum. Because we retain our fit to power-law créep, the value of n'

is prescribed, and the only new adjustable parameter is a'. This will

be discussed further in section 4.

2.5 Diffusional Flow

A stress can induce a diffusional flux of matter through, or around
the surfaces of grains in a polycrystal. This trans- or circum-granular
flux leads to strain, provided it is coupled with sliding displacements
in the plane of the boundaries themselves. The simple models of the
process (Nabarro, 1948; Herring, 1950; Coble, 1963; Lifshitz, 1965;
Gibbs, 1965; Raj and Ashby, 1971) assume that it is diffusion-controlled.
They are in substantial agreement in predicting a rate-equation: if both

lattice and grain boundary diffusion are permitted, the result is:

Y, = BT_? Degs (28)
kTd® €
where
T 6' DB
Deff = Dv[l +4—E— 5—] (29)

<
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This was the eauation in our earlier report. Like the equation
for climb-controlled creep, it 1is really two equa;ions. At high tempera-
tures lattice diffuston controls the_rate; the resulting floy is known
as Nabarro-Herring creep. At lower temperatures grain boundary diffusion
takes over; the flow is then called Coble creep. Eq. 28 predicts
Newtonian-viscous flow, at a rate which depends strongly on grain size.
This equation is an oversimplification;_it neglects.the kinetics
involved in detaching vacancies from grain boundary sites and re-attaching
them again, which may be important under certain conditions (Ashby, 1969,

1972b). Lacking a precise model at this time, we have not included this

in our present maps.

3. CONSTRUCTION OF THE MAPS

Climb-controlled creep (Qélimb) and diffusional flow (QDiff flow)
are independent flow mechanisms involving different defects. At a first
approximation, their strain-rates add. Climb creep (;climb) and glide
(§glide) do not. Both precesses involve the same defect; they describe
the different behavior of dislocations under different conditions, As
the stress 1is raised, the gliding part of the motion of'a dislocation
becomes more important, and the climbing part less importént, until, when
the boundary between the two fields is reached, climb 1s not necessary at
all. We have solved the problem by treating dislocation creep and glide

as alternative mechanisms, choosing always the faster one. This 1s actually

a convenient method of dividing the map into two regions, one depicting
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steady-state flow (dislocation creep) and one depicting constant struc-
ture yield (dislocation glide). We resort to this because our glide
equations do not accurately describe steady-state flow, If we did have
an accurate steady-state glide equation (containing a temperature dependent
recovery term) the treatment as alternative mechanisms would still be the
most accurate simple method of describing the transition from dislocatioﬁ
creep to glide.

The problem of the superposition of strengthening mechanisms for
;glide (mechanisms 2 and 3) was discussed earlier: as a first approxi-
mation, the slowest one is rate-controlling. Finally, if the ideal strength
is exceeded, flow becomes catastrophic (%l)' (We have made the special
case of Harper-Dorn creep (%5) an alternative mechanism to diffusional flow.
This 1s not entirely accurate when both mechanisms give equal contributions,
but is sufficiently accurate to demqnstrate the new mechanism. The special
case of the power-law breakdown equation (%6) is used as alternative to
climb-controlled creep).

In summary, the net strain-rate of a polycrystal subject to a stress

g at a temperature T 1s:

Y ) (30)

+ Greatest of (Yglide’ Y

net = 71 ¥ Ypigs climb

Within a field, one contribution to this equation is larger than any other.
(Rémember that Yclimb and YDiff flow each describe the sum of two additive

contributions). A field boundary is defined as the set of values of 0 and

T at which a switch of dominant mechanism occurs. The contours of constant
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strain-rate are obtained by solving eq. 30 for 0 as a function of T at
consgtant ?.

The actual construction of the maps 1s done by a computer program
which searches 1ncrementally over the stress-temperature field to find
the strain-rate contours and field boundaries. The main program con-
tains the search algorithm and the plotting routine. The calculations
are done primarily within a subroutine that evaluates the rate-equations
(for a preserfbed stress and temperature), forms a sum of the contributions
to the strain-rate of participating mechanisms, and identified the dominant
contribution. This method provides for easy changes in rate-equations or
their form of interaction. The method is also amenable to changes in the

axes of the maps, such as is shown in the log ; versus log (o/u) plot in Fig.2.

4, EXPERIMENTAL CORRELATIONS

To demonstrate the use of deformation maps we have constructed maps
for five common f.c.c. metals and six refractory b.c.c. metals, as shown
in Figs. 4-14. The data used to construct these maps is given in Table 1.
The accuracy of the maps reflects that of the experiments., Different experi-
menters may report strain-rates that differ by up to two orders of magnitude
at a given 0 and T. It 1s therefore necessary to make judgements, as to which
experiments more accurately reflect the true material behavior. These judge-
ments are largely subjective because of the large number of parameters involved —
p;rameters which include purity, testing atmosphere, grain size, thermomechanical

history, recrystallization effects, and type of tests.
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We have characterized the behavior of pure materials. This causes
some confusion because eQen small amounts of impurity may dramatically
change the behavior. As little as 0.17 impurity has been shown to lower
the creep rate of Ni by more than an order of magnitude (Dennison et al,
1966). The low temperature yleld stress of b.c.c. metals is raised
substantially by even smaller amounts of interstitial impurities.

One general problem in high temperature measurements is dynamic
recrystallization, which may result in oscillations in strain-rate at
constant stress (of an order of magnitude or more) — or oscillations
in the flow stress at constant strain-rate. This behavior will cause
difficulty in defining steady-state behavior. If recrystallization
occurs only once during a test, it may be neglected in evaluating steady-
state behavior. If the test produces repeated recrystallization, as is
common in hot torsion tests taken to large strains, the successive waves
of recrystallization may overlap to produce another type of steady-state
behavior. Recrystallization behavior depends dramatically on purity,
directly implying that the mechanical behavior depends on purity.

The maps presented in this section are constrqcted by direct com-
parison to experimental data. The experimental data is plotted on the
same axes, and the parameters are adjusted until the map matches experi-
ment (within the accuracy of experiment). Most of the adjustment involves
the dislocation creep parameters, n and A. The Pelerls yield parameters
for the b.c.c. metals and in some cases the dislocation core diffusion

coefficients, have also been adjusted. On the experimental plots shown
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here, the numbers for the points represent 1°g167' Points attached by solid
lines have the same strain-rate. A dashed line between points indicates a
series of intermediate experimental points. Included on the plots are creep,
tension, compression, torsion and extrusion tests. All are converted to shear
stress for plotting. Some confusion is possible for torsion and extrusion data
because the stress and strain-rate are not constant throughout the specimen;
they must be derived from the tests according to some mechanical assumption.

We have plotted shear stress data from torsion as reported by the experimenters.
The data for single crystals 1is plotted as critical resolved shear stress
whenever possible, and with the standard conversion from tensile to shear stress
otherwise, To compare it with the polycrystal data shown on the same map, the
reader must multiply the single-crystal stresses by the Taylor factor: 3.06//3
for f.c.c. and 2.9//3 for b.c.c. In arriving at the optimized data of Table 1,

single-crystal data was treated in this way,

4,1 F.C.C. metals

For the common f.c.c., metals, there is extensive data on the low tempera-
ture yield and work-hardening behavior. The yleld stress depends on the
obstacle density (or dislocation density) and will therefore be different for
different states of annealing and work-hardening. Direct comparison with
experiment is therefore inappropriate. Unless otherwise noted, we have used
a dislocation density of p = 6,25 x 1010/cm2 (or an obstacle spacing of
2 =4 x 10-6cm) for the f.c.c. maps. This represents a well work-hardened
state, though it is not the maximum density observableiénd is therefore not a
gaturation or steady-state density. We have used AF = 0.5ub3 for the following
maps, which is slightly greater than the expected proper value for forest dis-
location cutting; the effect of this difference is very small on the scale of

the following maps.
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The elastic moduli and volume diffusion coefficients of f.c.c. metals
have been well studied. For the shear modulus, U, we have used the geo-

metric mean of the two shear moduli of a cubic crystal:

b c . €y = Cpp)
44 2

This 1s the value that enters the anisotropic calculation of the elastic

energy of a % <110> screw dislocation in the f.c.c. structure. We have
incorporated a linear temperature dependence of the modulus — a reasonably
accurate approximation. We have chosen volume diffusion coefficients
which are generally intermediate among the many reported values. Modulus
and diffusion coefficients are listed in Table 1.

The following is a brief summary of the experimental data used
for each map:
NICKEL (Figure 4’

The high temperature creep parameters are based on Weertman and
Shahinian (1956) who reported creep tests on 99.75%Z Ni, with n = 4.6
in the high temperature region. It has been shown, however, (Dennison et al,
11966) that small amounts of impurites (~0.1%) may lower the creep rate of
nickel by up to an>order of magnitude. We have therefore used an A value
(3.0 x 106) almost an order of magnitude greater than would be derived
from Weertman anJEShahinian. This value provides a much closer correspon-
dence to the peak flow 'stress in gorsion data of Luton and Sellars (1969),

and other various data near the H.T. creep—L.T. creep boundary. In
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general, our A value for nickel is only approximate.

For low temperature creep, we have used the core diffusion coefficient
given by Canon and Stark (1969) for edge dislocations in a symmetric tilt
boundary. The activation energy for this (Q = 40.6 kcal/mole) matches the
findings of Norman and Duran (1970) in the L.T. creep region.‘ In addition,
Norman and Duran find n = 7.0, which they believe verifies the low tempera-
ture creep field. Their strain-rates accurately match our numerical pre-
diction (using A = 3.0 x 106). Weertman and Shahinian also find a low
temperature iﬁcrease in the stress exponent, although their strain-rates

are lower, We have not chosen a power-law breakdown parameter for nickel.
CQPPER (Figure 5)

The primary references for the high temperature creeﬁ of copper are
Felthém and Meakin (1959) and Barrett and Sherby (1964). For thé low
temperature creep field we have used a core diffusion activation energy
of 28.0 kcal/mole. This is chosen to match the activation energy for
low temperature creep found by Barrett and Sherby (1964). We have found
no experimental determination of core or boundary -<diffusion coefficients.
We have used the power-law breakdown equation for one map, using

2

a' = 7,94 x 107, This is in general agreement with the dynamic compression

data of Alder and Phillips (1954) and Samanta (1969,1971).

SILVER (Figure 6)
There has been less work on the creep of silver than on the other common
f.c.c. metals., The high temperature creep parameters are based on
.Leverant et al, (1966). For the low temperature creep‘field, the average

dislocation core diffusion coefficient given by Turnbull and Hoffman (1954)



~40-

has been used. Using these values, and considering diffusional creep,
we have obtailned good agreement with the data of Carreker and Guard (1955)

and Shroder et .al (1968),
ALUMINUM (Figure 7)

The high temperature creep parameters for aluminum are based on
Weertman‘(l956) and Servi and Grant (1951). At high temperatures, these
studies show an activation energy in agfeement with the diffusion coeffi-
cient of Lundy'and Murdock (1962): Qv = 34,0 kcal/mole., For low tempera-
ture creep, the dislocation core diffusion coefficient cited by Balluffi
(1970): Qc = 19.6 kcal/mole, which ﬁrovides pood agreement with low
temperature creep experiments, has been used. The Harper-Dorn creep field
is based on Harper et al (1958). 1t appears on the map for d = lmm, but
is suppressed by diffusional creep at d = 10um,

The power-law breakdoun region of aluminum has been extensively
studied; experimental data has been correlated acéording to a sinh equation
by Wong and Jonas (1968). Data for commercial purity aluminum — dynamic
compression (Alder and Phillips, 1954: Samanta, 1969, 1971 and Hockett,
1967) and for extrusion (Wong and Jonas, 1968) — show much lower strain-
rates than data for high purity aluminum — torsion (Sellars and Tegart,
1966) and for extrapolation of creep (Servi and Grant, 1951). Both sets
of data cannot be matched by the same power-law breakdown parameter. The
valuevused for both maps (a' = 1 x 103) provides an intermediate approxima-
&tion. The field appears hgre as’a general demonstration, not as an éxact

representation of experiment.
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LEAD (Figure 8)

Our high temperature creep parameters are based on Mohamed et al
(1973): n=5.0, A=2,5x 108. These differ from those that'could be
derived from the single crystal creep experiments of Weertman (1960),
which show a slightly lower n at high temperatures. We have used a
diffusion activation energy of 26.1 kcal/mole (Resing and Nachtrieb, 1961)
which 1is higher than the value found by Mohamed et al and lower than the
value derived from Weertman, -

Low temperature creep behavior is indicated by a number of studies.
Weertman's low temperature data shows a higher stress exponent and a
lower activation energy. Data of Feltham (1956) shows an apparent
Q = 22 kcal/mole, with n > 7. Room temperature data of Gifkins (1952,
19595 and Nichols and McCormick (1970) show n = 8, The dislocation core
diffusion coefficient is taken to match the boundary diffusion data of
Okkerse (1954): Qc = 15.6 kcal/ﬁole. The Harper-Dorn creep field is based

on Mohamed et al (1973). It appears for d = lmm, but not for d = 10um.

4.2 B.C.C. Hetals

We have prepared maps for the refractory metals in groups Va and
.EEE: Vv, Cr, Nb, Mo, Ta, and W. These maps use the same mechanism equation
as the f.c.c. maps (without Harper-Dorn creep or power-~law breakdown) plus
a Peierls barrier controlled glide equation.

For these b.c.c. metals it 1s important t; speclify the choice of
shear modulus and its temperature dependence. Some of these metals show

" fairly large anisotropy, so different averages of the single crystal elastic
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Fig. 6b)
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constants will have different values. We have used room temperature
modulus values that are derived from the anisotroplc calculation of the
energy of a 1/2 <111> screw dislocaFion (see Hirth and Lothe, 1968,
p.435). These values are listed in Table I. For the temperature depen-
dence we have made estimates from the temperature dependence of other
single crystal or polycrystal moduli. In all cases We have used the
approximation of a linear temperature dependence. This is fairly
accurate for all these metals except niobium which shows anomalous
behavior (see Armstrong, et al, 1966).

The volume self-diffusion for these metals is fairly well known.
For some there i1s evidence that the activation energy increases with
temperature., In particular, we have used a dual expression for the volumé
diffusion coefficient of vanadium, as given in Table 1. Similaribehaviof
has been demonstrated for tantalum (Pawel and Lundy, 1965) but can be
well approximated by one simple Arrhenius relationship.

We have found complete data for grain boundary and dislocation core

self-diffusion only for tungsten. For chromium, an activation energy for

core diffusion has been reported. All other core and boundary diffusion

coefficlents have been estimated using the approach, Qc = QB = ZQV.

For all the b.c.c. metals the parameters we have used for Peierls
barrier controlled yielding are only approximate. We have found our rate-
equation to be a good but not perfect match to experiment. The parameters

AFk and Tp would, however, be different were a different form of AG used.
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In any approximate fit to experimental data the chosen values of
AFk, Tp and ;p are all interdependent; changing any one slightly would
be acceptable, but would require changing the others.

It 18 difficult to find Qp experimentally unless the flow stress
is known for different strain-rates. From.the Briggs and Campbell (1972)
data on molybdenum, we have derived Qp = 1011/sec and have used this for
all the b.c.c. metals, This is the appropriate value for equation 12
(with stress-squared pre-exponential) and would differ for other pre-
exponential stress dependencies.

Given the QP value, the AF, value can easily be found from the

k
temperature dependence of the flow stress. The yleld stress of b.c.c.
metals is substantially loweréd by increased purity. In fact, there has
been‘debate as to whether the Peilerls stress ;esults from an intrinsic
lattice resistance or from smali_concentrations of interstitial impurities.
The question does not concern us here, excgpt that it must be recognized
Fhat the yield parameters refer to a particular level of purity.

Mucﬂ of the recent work on b.c.c. metals has measured the single
crystal critical resolved shear stress. This is related to the poly-
crystalline tensile flow stress by an appropriate Taylor factor, ~1.67,
as d;scussed in sectiop 2.2b. On our experimental plots it can be seen
that polycrystalline data and single crystal critical resolved shear stress

data (for comparable purities) differ by about this factor, at all tempera-

tures. The Taylor factor can then be included in the value of TP; the
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Tp_values in Table 1 are for polycrystalline yileld. As discussed in
section 2.2d, we have used the approximation that Peierls=-controlled

and obstacle-controlled glide are alternative mechanisms: the slowest
strain-rate is controlling. This results in the sharp corner in the
strain-rate contours. A more complete model of the mechanism inter-
action would smooth the tramsitipn, as shown for the plotted experiments.
We have arbitrarily chosen an obstacle spacing of £ = 2 % 10'5cm (or a
dislocation density of p = 2.5 x 109/cm2). This value is lower than that
used for f.c.c. maps, and represents a lower state of work-hardening. -
It is not necessarily that of the samples used for the plotted yield
stress experiments.

Let us briefly review the experimental data for each metal.

VANADIUM (Figure 9)

The dislocation creep parameters are based on Wheeler et al (1§71).
As mentioned above, the activation energy for.vélume diffusion decreased
from ~94 kcal/mole at above 1350°C to ~74 below. Wheeler et al find
that the activation for creep also decreased (from 113 to 94 to 76 kcal/mole)
with decreasing temperature, though the decrease occurs at a lower tempera-
ture. At their lowest temperatures, the activation enefgy drops to
54 kcal/mole, which they ascribe to core diffusion. The stress exponent,
n, increases from 5 at high temperatures to ~8 at low températures which

is also in accord with the low temperature creep behavior.
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The Pelerls stress parameters are derived from the high purity
polycrystalline data of Wang and Bainbridge (1972), which is probably -
the highest purity reported. This data agrees with their single crystal
data and with the single crystal data of Mitchell et al (1970) when

the Taylor factor conversion is included.

CHROMIUM (Figure 10)

The dislocation creep parameters for chromium are derived from
Stephens and Klopp (1972) who used high purity iodide chromium. Their
data at 1316° and 1149°C shows a stress exponent of n & 4.5; data at
816° and 982°C shows n = 6.5. The lower temperature data, however,
shows no tendency toward a lower activation energy. There is, therefore,
no conclusive evidence for (or against) a low temperature creep field
in chromium. The yield behavior of chromium is based on the Marcinkowski
and Lipsitt (1962) data for polycrystals. We have not found any single

crystal studies. .
NIOBIUM (Figure 11)

The elastic constants of niobium have an anomalous>temperature
dependence (Armstrong et al, 1966)., Because of this, we have neglected
the temperature dependence of the modulus. We have not found any exten-
sive creep studies at very high temperatures. We have used creep para-
meters based on Brinson and Argent (1962-1963) which are in agreement
with Stoop and Shahinian (1966) but show greater strain-rate than

~Abramyon et al (1969). The creep field of niobium is the least accurate
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among the metals discussed in this paper. The low temperature yield
behavior of niobium has been extensively studied for both polycrystals
and single crystals. We have used yield parameters based on Briggs

and Campbell (1972), which also agree well with earlier studies.
MOLYBDENUM (Figure 12)

The high temperature creep of molybdenum has been well studied. Ve
have based our high temperature creep parameters on data of Conrad and
Flagella (1968), which is more than an order of magnitude faster in creep
rate than Green, Smith and Olson (1959). The high temperature stress
exponent is n = 4.85. There are several studies which generally support
a low temperature creep field. Carvalhinos and Argent (1967), Pugh (1955)
and Semchyshen and Barr (1955) all shown = 6 — 8 for T = 0.4 — 0.53 TM’
and a lower activation energy than is found for volume diffusion. For
the low temperature yield paraméters, we have used Briggs and Campbell
(1972). This data is not the lowest yleld stress data available and
therefore does not represent the highest purity. Lawley et al (1962-63)
have found that the polycrystalline yield stress can be substantially
lowered (nearly a factor of 2,0) by further zone refining, although the

change in purity cannot be detected.
TANTALUM (Figure 13)

The high temperature creep parameters for tantalum are taken from
W.V. Green (1965). His steady-state data does show an activation' energy

increasing with temperature, as pointed out by J.E. Flinn and E.R. Gilbert
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| (1966), but this may be explained by the fact that the highest temperature
tests were done at higher temper;ture than the annealing temperature. The
indicated stress EXponent 1s n = 4,2. The?e is some indication of low
temperature creep behavior. The data of Schmidt et al (1960) at 1200° and
1000°C shows n = 6. The yield parameters for tantalum are based on data
of Wessel as cited by Bechtold, Wessel and France (1961), which is in good
agreement with the single crystal data of Mitchell‘and Spitzig (1965),
adjusted by the appropriate Taylor factor.

TUNGSTEN (Figure 14)

The high temperature creep of tungsten has been reviewed‘by Rébinson

| and Sherby (1969), who demonstratéd that most of the available data can
be divi&ed into high temperature creep above about 2000°C and low tempera-
ture creep below about 2000°C. The high temperature data is that of
Flagella (1967) — for wrought arc-?ast tungsten — and of King and Sell
"(1965). This data shows faster creep rates than that of Green (1959)

an& Flagella (1967) for powder metallurgy tungsten, The low temperature
creep region is represented by the data of Gilbert, Flinn and Yaggee
" (1965) which shows n & 7 between 1300° and 1900°C with an apparent activa-
tion energy of about 90 kcal/mole,‘although it is nearly an order of
magnitude slower than thevFlagélla data in the overlapping temperature
range, This general behavior is also indicated by other papers. The

low temperature yleld parameters for tungsten are based on the polycry-
stalline yield data éf Raffo (1969). This data is in general agreement
with single crystal critical resolved shear stress data of Koo (1963) and

Argon and Maloof (1966).
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5. DISCUSSION

Deformation mechanism maps have several important uses. First,
they provide an excellent means by which the complicated relations
between different deformation mechanisms can be presented and visualized.
This depends, of course, on the accuracy with which the maps describe
plastic behavior, which is, in turn, governed by the limitations imposed
by the simplifications and assumptions that are required. Second, they
provide a graphic means for the direct and easy comparison of expérinent
with theory, of different experiments one with anqther,_and of the
behavior of different materials or groups of materials. Finally, fhg
maps provide a qualitative method for the selection of a material for
engineering applications, éhe prediction of the mechanisms by which the
sanple or structuré deforms, and the prediction of the effects of
strengthening mechanisms, The following discussion will treat each of

these points 1in turn.

5.1 General Accuracy

Within the limitations of steady-state or constant-structure formu-
lations, the deformation maps in the major mechanism fields are as accurate
as can be determined from available experimental data. There remain, how-
ever, several regions and mechanisms which are not presently well understood.
Figure 15 shows qualitatively where some of thesn lie on a map for nickel.
Some of the difficulties involved in describing twinning and the power-law

(high stress) breakdown region have been discussed in section 2. The region
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of dynamic recrystallization is difficult to delineate because the eaSg
of recrystallization depends on the purity. This may in fact account

for much of the reported dependence on purity in the dislocation.creep
fields. Although recrystallization may provide an additional méans of
recovery to dislocations, we are uncertain whether the kinetics would be
radically changed. The behavior may be that of repeated primary creep,
similar to, but faster than, steady-state dislocation creep. The region
of grain boundary sliding accommcdated by plastic flow (dislocation creep
within the grains) is definitely an expected coupled mechanism. We do-
not yet have a sufficiently accurate model to inclﬁde on the maps, but the
effect on the strain-rate should not be great,

The use of steady-state flow and constant-structure yield formulations
is the major limitation on the maps in presenting a complete view of plastic
deformation behavior. Steady-state flow 1s an accurate representation of
diffqéional creep (without grain growth or recrystallization). For dis-
location creep, however, the steady-state formulation neglects primary and
tertiary creep entirely. It also neglects logarithmic creep (which may be
considered an extended primary creep). It would be possible to include
primary creep by presenting a series of maps showing the cumulative strain
at various times. The added dimension of time greatly increases the com-
plexity. The parameters describing primary creep are known for only a few
circumstances. In addition, the primary creep behavior depends on the initial
dislocation structure; different studies will generally use material with

different initial structures (different degrees of annealing). Within one
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study, the initial structure may differ at different test temperatures
_because of recovery. For these reasons our maps are limited to the
well known steady-state creep behavior.

Tertiary creep would also be difficult to characterize. The behavior
of creep rupture from void growth and coalescence occurs in tension, but
not in compression, and therefore does not represent general plastic
behavior. The onset of tertiary creep also depends on void nucleation
and growth, which would require the specification of additional para-
meters (e.g. the number and size of grain boundary second phase inclusions).
Although we have neglected tertiary creep, it may often provide a problem
in comparing experiments, A tensile creep experiment that shows no pro-
longed steady-state behavior may represent tertiary behavior starting
before primary creep has ended. In this case, the reported minimum strain-
rate may not be steady-state strain-rate.

For the dislocation glide field, the constant structure yield formu-
lation does not allow a description of work-hardening behavior. Such
behavior ;ould be described by a series of maps showing the stress reached
at various times for various constant strain-rates. This description
differs from the one most appropriate for primary creep, providing further

complications. We have, therefore, not included work-hardening.

5.2 Material Comparisons

Deformation mechanism maps provide a convenient method of making

various comparisons: comparing experiment to theory, comparing materials
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within a group of similar crystal structure and bonding, or comparing
different groups of materials. The comparative use of‘various,typés of
plots is certainly not original to this paper. The contribution of our
approach is that experiment can easily be compared to a number of possible
mechanisms if the data is specifically plotted according to 1its stress-
temperature location. The important case for this study is within the
dislocation creep field.

Many studies (though not all) have derived empirical creep parameters
with little regard for the Qtress-temperature location of the data. With
our method of plotting, we have found a generally consistent variation of
parameters with stress and temperature that 1s consistent with the low/high
temperature creep transition described in section 2.4a., In a similar
manner, we expect that the power-law breakdown regipn will be described
differently at high and low temperatures. Our experimental comparisons
‘have also been useful in providing an understanding of how accurate our
knowledge of material behavior actually is. Once we have formulated
material behavior into accurate maps, we may make informative compa;isons
between materials within a group of similar crystal structure and bonding
or between such groupé. All the maps shown in section 4 are for two very
similar groups: pure f.c.c. and pure b.c.c. metals. The mechanical
properties of other groups, such as alkali halides, metal oxides, and
carbides, is generally less well known. Although we may expect the ‘same
basic deformation mechanisms to operate, direct comparison is beyond the
scope of this paper.' From the maps we have presénted, however, we may

make the following informative conclusions.
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5.2a F.C.C. comparisons

All maps shown thus far have a linear temperature scale normalized
with respect to the melting temperature, and a logarithmic stress scale
normalized with respect to the shear modulus. This permits a logical
method of comparison. The f.c.c. maps should all be identical to the
degree that the mechanical behavior can be described by crystal struc-
ture, the melting temperature and the shear modulus. This comparison can
be demonstrated directly. Figure 16 shows the strain-rate contour for
? =_10-8/sgc and grain size d = 100um for the f.c.c. metals on un-normalized
temperature and stress scales, Fig. 17 shows the same contours plotted
on normalized scales. (These plots do not include Harper-Dorn creep or
power-law breakdown). The great divergence is reduéed but not eliminated.

In Fig. 18 we add three further normalizations. Because both
dislocation creep and diffusional creep depend on self-diffusion, we com-
pare strain-rate contours that are normalized with respect to melting point
diffusivity. In dimensionless form, we use

. 10-14D¥(TM) .
b
The logical dimensionless normalization for the grain size is the Burgers'
vector; we use d = 4 X 105b. For dislocation glide our important input
parameter is the dislocation density (or obstacle spacing). This may
algo be normalized with respect to the Burgers' vector as:

_ 2.5 x 107

p .
b2
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Using these normalizations, the contours for the dislocation glide region
colncide: this is a direct result of our glide rate-equations. At the
highest temperature in the Nabarro-Herring creep region, the contours are
also closely bunched. The remaining divergence is in the power-law creep
region.

It has been shown that the normalized high temperature creep strength
of the f.c.c. metals increases as the stacking-fault energy decreases
(see, for instance, Barrett and Sherby, 1965). This is exactly the effect
shown in this figure: the order of contours (Al, Ni, Pb, Cu, Ag) matches
the order of the stacking-fault energies. It may be added that this
divergence of normalizea contours is substantially greater than the
experimental error inyolvedrin constructing the maps, and therefore repre-
sents a real material property.

Although the stacking-fault energy effect is well demonstrated, we
do not believe that the accuracy of the maps justifies an independent deter-
mination of the exact form of this dependence. We can, however, point out
that the stress exponent, n, does not correlate with the stacking-fault
energy as has been suggested (see Bird et al, 1969). n is roughly
adjustable between 4 and 5 for all pure f.c.c. metals, and will differ
between different studies of each metal.

There are only a limited number of ways that we would expect normal-
ized f.c.c. metals to differ. The priméry one 13, of course, the stacking-
fault energy. The second difference is the dislocation core diffusion
coefficient (as compared to volume diffusion). This should be related

to stacking-fault energy through spacing of partials. The effect should
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dominate in the low temperature creep field, The limited measurements
of core diffusion do not really allow the effect to be investigated.
Other properties, such as the degree of elastic anisotropy, probably

have little effect.

5.2b B.C.C. comparisons

Figures 19 and 20 show comparative plots for the b.é.c. metals,
similar to those shown for the f.c.c. metals. In this case the divergence
found in the unnormalized plot (Fig. 19) is substantially eliminated in
the stress and temperature normalized plot (Fig. 20). 1In the Péieris
barrier-controlled yield region, there is a distinct difference betweeﬁ
the group z@ metals (V, Nb and Ta) and the Ezb metals (Cr, Mo and W);
the former show higher normalized Peierls stresses, and the lower valueq of
AFk (hence the steeper temperature dependence). This behavior has been
pointed out previously by Bechtold et al (1960). In the creep region the
correlation is very close for Cr, Hq and W: closer than the experimental
error involved. The deviations of Ta, Nb and V are noticeable, but not
great. Because the divergence in Fig. 20 is small (comparable to experi-
mental error), we would not expect further normalizations to provide any
better correspondence. vThis is especially true because the melting point

diffusivities are approximately equal and not precisely known.

5.3 Design Applications

Deformation mechanism maps provide a means of demonstrating the

effects of various changes in materials, This may be helpful in choosing
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materials for applications, even though the maps are not sufficiently
accurate for engineering design. In this regard it is useful to have

an 1dea of the areas of a map that are accessible to e#periment, and

the areas to which materials are exposed in practice. Fig. 21 shows

these areas on a map for nickel, with shaded regions showing the actual
scope of published creep and hot torsion tests. Also shown are regions

of conventional cold and hot-working processes, the region in whicﬁ a
material is used for structural applications (; < 1% per year), and, as

a lower limit of interest; the region encountered in slow geophysical
deformation processes (; > 10_14/sec). This figure illustrates the impor-
tant point that the areas of stress/temperature space which are most studied
by laboratory experiments are often those which are least encountered in
the forming, or in the applications, of materials, Thé mechanisms iden-
tified in the lab tests may not be those that are dominant in use. For
this reason, our method of displaying the combined effects of many mechanisms
is a useful one. Among the many desired design properties of materials,
the maps describe oﬂly the resistance to yileld or steady-state flow. This
property is generally at its worst in pure metals (all maps of section 4)
and various strengthening mechanisms are incorporated into almost all
struétural‘materials. To be useful, the strengthening mechanism must be
effective against the deformation mechanism that dominates at the stress
and temperature of service. For these purposes, the different deformation
mechanisms are dislocation glide, dislocation creep, and diffusional creep.

Strengthening mechanisms for one may have no effect on the others., For
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example, the simplest means of strengthening against diffusional flow is
to increase the grain size. This will have little effect on the steady-
‘state dislocation cfeep, and will probably lower the low temperature
dislocation glide flow stress. Similarly, increasing the dislocation
density by work-hardening strengthens against dislocation glide, but will
have little effect on high temperature creep because the dislocations will
anneal out.

A full presentation of the different strengthening mechanisms avail-
able is beyond the scope of thils paper. We have, however, prepared one
simple eiample. Figure 22 shows a map for a recrystallized Ni — 1 volZ%
~Th02 alloy, based on the creep data of Wilcox and Clauer (1969). The Thdz
is a stable disﬁersion of average particle diameter 2.2 x 10-6cm, and a
mean planar center to center spacingﬂ2.505 x 10-5cm. (Grain size 0.lmm is
assumed). Although we do not have an accurate theory for climb-controlled
creep in such a structﬁre, we can determine experimental parameters for
our dislocation creep standard equation: pl= 8.0, A = 5,0 x 1015.
Diffusiqﬁ coefficients, mddulus, etc are assumed to be the same as for
pure nickel. For the dislocation glide field, we have used the initial
Orowan stress based on the particle spacing. This 1is lower than the yield
stress for work-hardened pure nickel, but the alloy would work-harden very
quickly when deformed. Diffusional creep is assumed to be the same as
for pure nickel.

As can be seen by comparision with Fig. 4c, the dispersion greatly

inhibits dislocation creep and contracts the field. At this assumed
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grain size, diffusional creep now becomes an important mechanism to
consider, since it becomes dominant at stresses slightly lower than the
plotted data. We can clearly see that extrapolation of the creep data

to low stress at high temperatures. would not be adequate for design purposes.

6. SUMMARY

1) Deformation maps can be constructed which show fields of
stress and temperature in which several different deformation mechanisms
are dominant. Strain-rate contours on these maps provide a reﬁreéehtation
of the stress—temperature-strain-rate relationship.

2) We have constructed such maps for five f.c.c. and six b.c.c.
metals, arriving at an optimized set of input data by.careful comparigon
with a mass of expérimentai data. By this procedure, maps can be constructed
-which depict farily accurately the steady-state mechanical behavior of the
metal in question.

3) '‘Maps for pure metals of similar structure (on normalized stress
and temperature scales) are strikingly similar. Further normalizations can
‘be used to make them almost superimpose. For f.c.c. metals, the residual
differences are predominantly due to the stacking-fault energy. For the
b.c.c. metals studied, the residual differences are of the geﬁefal order
of magnitude of the experimental uncertainty.

4) Maps for engineering materials éan be constructed. As‘an'example,

one. for a recrystallized Ni — 1 vol%Z ThO, alloy is presented in the text.

2

The maps are useful for design under certain conditions, particularly when .
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they indicate that a change of mechanism may occur between the region

of experimental observation and the region of design application.
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v 1.403 2.632 | 2173 | 5.01 U® 12589 1 0.3 (73.65(20) sx108 ) g, D
214.0 94.14 :
cc_ || 1.201 2.498 | 2163 |12.6 1) 2.3 49 0.28 B2 | 73,2 D] 50077 (D e D
Nb || 1.798 2.86 | 2741 | 4.43 U9 o D 1.1 @9 | 96,0 9 5978 (D gy D
Mo 1.53 .13 2883 |13.4 29 1.5 29 0.5 @O | g6.9 2O 5 46x1078 () g3 D
Te 1.80 2.86 | 3271 | 6.12 18 1,354 0.126 @) | 957 8 5 72x1078 (M gy (M)
" 1.59 2.9 | 3683 [16.0 %Y 1.04¢%7) 5.6 @9 | 0. @] 333077 GOg; o GO
- .
ap 1 ot + 1) p 0D AR, (31) 1
c o c A n 9 k
c 10 dynes .
4 (keal, ¢ 7 ) -13
cm /8sec) mole co (10 ““ergs) (cm)
N {3.0a0713 () | 406 (4D 3.0x10° § 4.6 &x1078
Cu 10716 G o o G |5 uxg’ 4.8 ax108
ag |2.8x1071° 19.7 M [ 35702 | 4.3 ax10-5
AL |7xao7l? G4 g 6 (4) 1y 00f 6.4 ax10~5
Pb 1071 15.7 2.5x10° 5.0 4x100
v 1wl so. | 1x 10t 5.0 8.36 8.0 2%10™°
Cr 1070 D | 4e, @3 [ g 3336x10%) 4.3 12,3 11.5 =107
o | 1.0 D, D ax10’ 4.4 7.35 9.0 2x10~°
Mo 10738 D [y D[ gg08 4.85 8.84 15.5 2.73x107°
Ta 1B Mg @ 7.55%10° 4.2 8.02 9.5 2x10™°
w | 7.856x107% | s0.5 OO | 4 1x108 4.7 10.41 17.0 2%10™°
(30)
S
N uoll (T - 300) m OT]

+ v,
Dv - D° exp(= §T)' DB - D°B
t+
use:
A= (O Ly
s .

Q
exp (- R—i);

D=~D

c

Q

<
o, %P (- ®D)
c

Theae values are given for the tensile streas-tensile strain-rate.

For the shear equation, we

This value is used for Fig, 4; a slightly amaller value is used for Figs, 1, 15 snd 21,
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